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Introduction 

Travelocity has a product that due to multiple resellers has confirmation numbers in a variety of 

alphanumeric patterns.  The codes are regularly analyzed to optimize the grammar, weighting the 

expected patterns more heavily.  However, the success rate on these still leaves lots of room for 

improvement, and the patterns change regularly.  It is nearly impossible to keep up with them, but 

opening the grammar to accept more patterns would do more harm than good. 

The codes vary from five to fifteen characters in length.  Nearly 90% fall into five distinct categories, with 

either all numbers or numbers plus specific alphas.  The other 10% are extremely varied, and the term 

“pattern” gets used loosely at times.  One such pattern is the number 4 followed by a single alpha 

followed by 5 characters that may be alpha or numeric.  The recognition is obviously not so great on 

such a pattern. 

The quest, then, is twofold.  First, to better capture that 10%.  Second, to improve recognition on the 

other 90% of confirmation codes.  IBM did some research on individual character recognition 

substitutions in 2001 and 2002 ( http://drjim.0catch.com/alpha2-acc.pdf, http://drjim.0catch.com/alpha-
acc.pdf), but what about strings of alphas in the better recognizers in use today? 

Methods 

The decision was made to run a test against Travelocity’s speech recognition engine with 6-character 

strings.  The strings were generated using a Latin Square to get every character next to every other 

character.  Then a set were added that doubled each character at some point in the string.  This resulted 

in 288 6-character strings. 

Each participant was asked to read 8 strings, so it took 36 participants to get one set of data.  VocaLabs 

provided the participants.  A little over 500 participants called in, and enough recordings were listened 

to and transcribed sequentially to get 10 full sets of data. 

There were some hints given in the instructions.  Each data set had a key associated with it (an animal 

name) that would trigger specific instructions about confusion between 0 and O, 1 and I.  For example, 

for the string “3J2K1L,” the IVR said, “Now on this one, that's the number 1.  Go ahead.”  Because the 

participants received their instructions via the web, it was impossible to control the font to ensure that 

there wouldn’t be confusability. 

The 8 strings generated from the Latin Square and the double character sequences were rearranged to 

put the double character as utterance number 6 and put all the ones with hints at the end of the list so 

that the early ones flowed more easily in the instructions. 



During the transcription process, if a participant didn’t give the utterance requested, it was thrown out.  

The test was for recognition, not instruction following or reading.  There were also some turn-taking 

issues in the design that weren’t discovered until it was too late to do anything about it.  Measurements 

were taken of what was recognized when the expected utterance was given.  Whenever an utterance 

(or lack thereof) was thrown out, the same string from another participant was used to get the 10 full 

sets of data.  The first task was to find 10 instances of each of the 288 strings being correctly said by 

participants. 

The engine was set to return up to 9 entries in the nbest list.  For each of these 2880 utterances, the 

recognition logs were checked and the following items were recorded. 

• The call ID to link the utterance back to the recordings and logs (this is often the same for the 

entire set of 8 utterances in a test set, but often not if utterances had to be thrown out as 

noted above) 

• The result in nbest:1 or $$$$$$ if nothing was returned 

• What spot the actual utterance was returned in, or 10 if it wasn’t in the nbest list at all 

• The confidence score of the correct return, or 0.00 if it wasn’t in the list at all 

• Nbest:2 if the utterance wasn’t in the list at all 

Here is one set of data.   

• The call ID is the same for all of them, meaning the caller correctly gave all 8 strings. 

• For the first utterance, the recognizer returned the correct string in the fourth spot with a 

confidence of 0.02. 

• For the second utterance, the recognizer returned nothing. 

• For the third utterance, the recognizer got it right in the first spot with a confidence of 0.40. 

• For the sixth utterance, the recognizer returned nine strings, but none of them was correct.  

Nbest:2 is also noted. 

Num String Call ID  Nbest:1 

Correct 

nbest 

slot 

Correct 

conf 

score 

Nbest:2 

for 10 

1 A9B8C7 2795531 A9DHC7 4 0.02   

2 7D6E5F 2795531 $$$$$$       

3 F4G3H2 2795531 F4G3H2 1 0.40   

4 KZLYMX 2795531 KZLYMX 1 0.94   

5 XNWOVP 2795531 XNWOVT 2 0.33   

6 TAAJXP 2795531 TLAAJX 10 0.00 KLAAJX 

7 PUQTRS 2795531 PUQKRS 2 0.01   

8 2I1J0K 2795531 2I1J0K 1 0.78   

 



After the transcription was complete, the results were tabulated to show what was returned for each 

character spoken.  The raw numbers are not very telling since the no matches decrease the number of 

utterances with a return for certain characters, and the strings with double characters artificially 

increase the number of utterances for certain letters.  Thus, percentages were calculated for each pair.  

Percentages were only calculated when something was returned.  If an “easy” character was in a string 

with a couple of “hard” ones that led to a no match, it seemed unfair to influence the results of all the 

characters in the string. 

Results 

Character Pairs 

The table with the percentages of character pairs uttered and returned is on the next page.  The 

utterances go down the left side; the recognizer’s return in nbest:1 is across the top.  To make the data 

as readable as possible on a single page, the percentages are written as .25 rather than 0.25, in a very 

small font, on a page turned to landscape orientation. 

Correct recognitions are down the diagonal in green.  Misrecognitions are in increasingly darker shades 

of blue.  Values of .00 mean that there were misrecognitions, but more decimal places would be needed 

to see it. 
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The dark blue cells are the ones of obvious interest, but it’s interesting to note that some characters had 

multiple incorrect returns at high rates, so the overall right/wrong numbers are interesting as well.  Here 

are both sets of data.  Overall right/wrong is shown both alphabetically and by how often that character 

is wrong.  For that second listing, characters in blue are ones that are in the highest offenders list.  

What’s interesting to note is that several characters that are often wrong (T, C, X, and 1) don’t have any 

single character pair in the list of highest offenders.  Their misrecognitions are simply all over the place.

In Out Freq   Right Wrong   Right Wrong 
F S 0.26 A 0.82 0.18 V 0.59 0.41 
V Z 0.18 B 0.74 0.26 F 0.69 0.31 
8 H 0.16 C 0.91 0.09 P 0.74 0.26 
P T 0.15 D 0.81 0.19 B 0.74 0.26 
A 8 0.13 E 0.92 0.08 8 0.75 0.25 
Q U 0.12 F 0.69 0.31 Z 0.76 0.24 
Z V 0.10 G 0.93 0.07 D 0.81 0.19 
B E 0.09 H 0.98 0.02 Q 0.82 0.18 
S F 0.09 I 0.96 0.04 T 0.82 0.18 
V B 0.08 J 0.96 0.04 A 0.82 0.18 
B D 0.08 K 0.94 0.06 S 0.89 0.11 
D B 0.07 L 0.97 0.03 5 0.91 0.09 
5 I 0.07 M 0.92 0.08 C 0.91 0.09 
5 Y 0.07 N 0.94 0.06 X 0.91 0.09 
M N 0.06 O 0.97 0.03 1 0.92 0.08 

P 0.74 0.26 M 0.92 0.08 
Q 0.82 0.18 2 0.92 0.08 
R 0.98 0.02 E 0.92 0.08 
S 0.89 0.11 G 0.93 0.07 
T 0.82 0.18 K 0.94 0.06 
U 0.98 0.02 N 0.94 0.06 
V 0.59 0.41 J 0.96 0.04 
W 0.97 0.03 I 0.96 0.04 
X 0.91 0.09 0 0.97 0.03 
Y 0.98 0.02 6 0.97 0.03 
Z 0.76 0.24 O 0.97 0.03 
0 0.97 0.03 L 0.97 0.03 
1 0.92 0.08 W 0.97 0.03 
2 0.92 0.08 Y 0.98 0.02 
3 0.98 0.02 U 0.98 0.02 
4 0.99 0.01 H 0.98 0.02 
5 0.91 0.09 7 0.98 0.02 
6 0.97 0.03 R 0.98 0.02 
7 0.98 0.02 3 0.98 0.02 
8 0.75 0.25 9 0.98 0.02 
9 0.98 0.02 4 0.99 0.01 

           
 



The first conclusion to be drawn from all this is that if at all possible, avoid the highest offender 

characters completely.  Unfortunately, the people trying to make systems recognize alphanumeric 

strings rarely have influence over the people generating those strings.  If there is any degree of 

influence, pick your battles as to how far down the list to recommend avoiding. 

Nbest List Results 

The next question is how useful the nbest list is in finding the right match.  How far down is useful?  How 

low should the confidence threshold be?  Here are results for all 2880 transcribed utterances. 

Spot Count Percent Cum 
Average 

Confidence 

1 1428 49.6% 49.6% 0.76 

2 418 14.5% 64.1% 0.14 

3 133 4.6% 68.7% 0.03 

4 83 2.9% 71.6% 0.02 

5 48 1.7% 73.3% 0.01 

6 24 0.8% 74.1% 0.01 

7 14 0.5% 74.6% 0.01 

8 13 0.5% 75.0% 0.01 

9 3 0.1% 75.1% 0.01 

Bad Reco 410 14.2% 89.4%  

NM 306 10.6% 100.0%  

 

Bad reco means an nbest list was returned, but the utterance wasn’t in it.  NM is a no match, meaning 

the recognizer couldn’t even venture a guess. 

In most cases, any of those average confidences for spot 2 and below would be considered too low to 

fool with.  However, using those low confidences for nbest:2 through nbest:9 raises the total percentage 

of correctly found utterances from 50% to 75%.  The conclusion here is to completely ignore the 

confidence score. 

How far down the nbest list to throw against the back end is going to be highly dependent on 

environment.  In this case, probably all the way down through 8.  Check them all against the back end, 

then if there are multiple returns, ask the caller a second question based on other data returned to 

figure out which if any of them are the correct one. 

In the case where the correct utterance was found somewhere in the nbest list, the average spot was 

1.67 with a confidence score of 0.54. 

Proactive Substitution 

Returning to those dark blue cells of the highest offender misrecognitions, in the cases where the 

recognizer returned an nbest list but the correct utterance wasn’t on it, what happens if we take nbest:1 



and proactively substitute for those common misrecognitions?  How often would that give us the 

correct utterance?  There were 1158 times that this occurred where the recognizer didn’t have the right 

utterance in the nbest list.  Nbest:1 for each of these was run against two sets of proactive substitutions: 

the top 15 (all the dark blue) and just the top 8. 

Proactive List 1 Proactive List 2 

FS FS 

VZ VZ 

8H 8H 

PT PT 

A8 A8 

QU QU 

ZV ZV 

BE BE 

SF 

VB 

BD 

DB 

5I 

5Y 

MN 

 

Take this example. 

DTCUBV BTCUDZ D B T T C C U U B D V Z DB ** ** ** BD VZ 

 

Utterances are in white, returns shaded.  Three of the six characters were returned incorrectly in 

nbest:1.  These result in the character pairs DB, BD, and VZ.  All three of which are in the list of highest 

offenders.  Where the B is returned, it is often done incorrectly for a V or a D.  Proactively look both up 

as well as the B.  Understandably, the larger the list of substitutions and the longer the string, the more 

possibilities this results in.  For the original return of BTCUDZ, the following are the letters to check.  The 

shaded ones get checked in the first list only. 

B T C U D Z 

V P   Q B V 

D           

List 1 3 2 1 2 2 2 48 

List 2 1 2 1 2 1 2 8 

 



With the first list, replacing every high offender with its common substitutions means there are now 48 

strings to check against the back end.  With the shorter list, there are only 8.  The actual utterance 

correctly occurs in the list of 48, but not in the list of 8. 

Run against all 1158 misrecognitions, the longer proactive substitution list results in recovering 498 or 

43% of them.  The shorter list results in recovering 346 or 30%. 

However, the example given should highlight the downside: depending on the string, there can be 

many, many new strings to check.  For list 1, the average was 9.3 strings to check and the maximum was 

144.  For list 2, the average was 4.6 and the maximum was 32.  Obviously, algorithms need to be 

employed to limit the number of strings generated this way.  Which means the full recovery probably 

won’t be reached. 

It was previously noted that when the correct string wasn’t in the nbest list, nbest:2 was also recorded.  

This was so that proactive substitution on both nbest:1 and nbest:2 could be investigated.  Running it 

against the nbest:2 resulted in very few additional recoveries while leading to much longer lists of 

strings to check. 

Conclusions 

So what does it all mean?  What should one do with alphanumeric strings?  It is now time to employ the 

classic voice interaction design answer of “it depends.”  It depends on the length of the strings.  It 

depends on the back end: how many queries can it support at once and how long does it take to return 

the data.  It depends on how often the strings that are tried against the back end result in a match, 

meaning how likely is follow-up disambiguation needed.  It depends on the effectiveness of the follow-

up question to correctly identify the correct string if multiple are found on the back end. 

In amongst all these “it depends” are some concrete findings: 

• Ignore the confidence scores.  Very low ones are often right. 

• Use the nbest list.  Hit the back end with a bunch of possibilities. 

• Do some proactive substitution above and beyond what the nbest list provides. 

For Travelocity’s specific problem, all of the above will be employed.  The exact algorithm to be used will 

probably need to be tweaked, but here’s the starting point.  The interface with the back end supports 15 

queries at once.  The nbest list down to 8 will be used.  Proactive substitutions in order of likelihood will 

be used up until the point where 30 total strings have been generated.  That will result in two successive 

hits to the back end of 15 strings each.  A follow up question or questions can then be asked to figure 

out which reservation is the correct one if multiples are found. 

 


